Giải bài 11, 12, 13, 14, 15 trang 74, 75 SGK toán 8 tập 1

Giải bài tập trang 74, 75 bài 3 Hình thang cân sgk toán 8 tập 1. Câu 11: Tính độ dài các cạnh của hình thang cân ABCD…

Bài 11 trang 74 sgk toán 8 tập 1

Tính độ dài các cạnh của hình thang cân ABCD trên giấy kẻ ô vuông (h.30, độ dài cạnh ô vuông là 1cm).

Bạn đang xem bài: Giải bài 11, 12, 13, 14, 15 trang 74, 75 SGK toán 8 tập 1

Bài giải:

Theo hình vẽ, ta có: AB = 2cm, CD = 4cm

 giai bai 11 12 13 14 15 trang 74 75 sgk toan 8 tap 1 1 1517333686 c2phanchutrinh.edu.vn

Trong tam giác vuông AED, áp dụng định lý Pitago ta được:

AD2 = AE2 + ED2

          = 32 + 12 =10

Suy ra AD = \(\sqrt{10}\)cm

Vậy AB = 2cm, CD = 4cm, AD = BC = \(\sqrt{10}\)cm    


Bài 12 trang 74 sgk toán 8 tập 1

Cho hình thang cân ABCD ( AB // CD, AB

Bài giải:

 giai bai 11 12 13 14 15 trang 74 75 sgk toan 8 tap 1 2 1517333686 c2phanchutrinh.edu.vn

              

Xét hai tam giác vuông AED và BFC

Ta có: AD = BC (gt)

giai bai 11 12 13 14 15 trang 74 75 sgk toan 8 tap 1 3 1517333686 c2phanchutrinh.edu.vn

(gt)

Nên  ∆AED =  ∆BFC (cạnh huyền – góc nhọn)

Suy ra: DE = CF


Bài 13 trang 74 sgk toán 8 tập 1

Cho hình thang cân ABCD (AB // CD), E là giao điểm của hai đường chéo. Chứng minh rằng EA = EB, EC = ED.

Bài giải:

Do ABCD là hình thang cân nên AD = BC, AC = BC, \(\widehat{D}=\widehat{C}\)

Xét hai tam giác ADC và BCD, ta có: giai bai 11 12 13 14 15 trang 74 75 sgk toan 8 tap 1 4 1517333686 c2phanchutrinh.edu.vn

         AD = BC (gt)

        AC = BD (gt)

         DC chung

Nên  ∆ADC =  ∆BCD (c.c.c)

Suy ra \(\widehat{C_{1}}=\widehat{D_{1}}\)

Do đó tam giác ECD cân tại E, nên EC = ED

Ta lại có: AC = BD suy ra EA = EB

Chú ý: Ngoài cách chứng minh  ∆ADC =  ∆BCD (c.c.c) ta còn có thể chứng minh  ∆ADC =  ∆BCD (c.g.c) như sau:

AD = BC, \(\widehat{D}=\widehat{C}\) , DC là cạnh chung.


Bài 14 trang 75 sgk toán 8 tập 1

Đố. Trong các tứ giác ABCD và EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao?

giai bai 11 12 13 14 15 trang 74 75 sgk toan 8 tap 1 5 1517333686 c2phanchutrinh.edu.vn

Bài giải:

Để xét xem tứ giác nào là hình thang cân ta dùng tính chất

 “Trong hình thang cân hai cạnh bên bằng nhau”

Tứ giác ABCD là hình thang cân vì có AD = BC.

Tứ giác EFGH không là hình thang cân vì EF > GH.


Bài 15 trang 75 sgk toán 8 tập 1

Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D và E sao cho AD = AE.

a) Chứng minh rằng BDEC là hình thang cân.

b) Tính các góc của hình thang cân đó, biết rằng \(\widehat{A}\)=500

Bài giải:

a) Ta có AD =  AE nên  ∆ADE cân

Do đó  \(\widehat{D_{1}}\) = \(\widehat{E_{1}}\)

Trong tam giác ADE có:  \(\widehat{D_{1}}\) +  \(\widehat{E_{1}}\) + \(\widehat{A}\)=1800

Hay 2\(\widehat{D_{1}}\) = 1800 –  \(\widehat{A}\)

\(\widehat{D_{1}}\) = \(\frac{180^{0}-\widehat{A}}{2}\)

Tương tự trong tam giác cân ABC ta có \(\widehat{B}\) = \(\frac{180^{0}-\widehat{A}}{2}\)

Nên \(\widehat{D_{1}}\) = \(\widehat{B}\) là hai góc đồng vị.

Suy ra DE // BC

Do đó BDEC là hình thang.

Lại có \(\widehat{B}\) = \(\widehat{C}\)

Nên BDEC là hình thang cân.

b) Với \(\widehat{A}\)=500

Ta được \(\widehat{B}\) = \(\widehat{C}\) = \(\frac{180^{0}-\widehat{A}}{2}\) = \(\frac{180^{0}-50^{0}}{2}\) = 650

\(\widehat{D_{2}}=\widehat{E_{2}}\)=180– \(\widehat{B}\)= 1800 – 650=1150

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.