Giải bài 3.27, 3.28, 3.29, 3.30, 3.31 trang 58 SGK Toán 7 tập 1 – KNTT

Giải SGK Toán 7 trang 58 tập 1 Kết nối tri thức – Bài luyện tập chung. Bài 3.29 Kẻ các tia phân giác Ax, By của một cặp góc so le trong tạo bởi đường thẳng b vuông góc với hai đường thẳng song song c, d

Bài 3.27 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó.

Bạn đang xem bài: Giải bài 3.27, 3.28, 3.29, 3.30, 3.31 trang 58 SGK Toán 7 tập 1 – KNTT

Lời giải: 

Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \(\widehat B + \widehat C = 180^\circ \) ( 2 góc trong cùng phía)

Mặt khác:

\(\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}\)

Bài 3.28 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Vẽ hình minh họa và viết giả thiết, kết luận của định lí: “ Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”

Lời giải: 

bai 3 28 trang 58 toan lop 7 tap 1 1 Trường THCS Phan Chu Trinh

Bài 3.29 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Kẻ các tia phân giác Ax, By của một cặp góc so le trong tạo bởi đường thẳng b vuông góc với hai đường thẳng song song c, d ( H.3.48). Chứng minh rằng hai tia phân giác đó nằm trên hai đường thẳng song song.

bai 329 trang 58 toan 7 Trường THCS Phan Chu Trinh

Lời giải: 

giai bai 329 toan 7 kntt Trường THCS Phan Chu Trinh

Vì Ax là tia phân giác của góc A vuông nên \(\widehat {{A_1}} = \widehat {{A_2}} = \frac{1}{2}.90^\circ  = 45^\circ \)

Vì By là tia phân giác của góc B vuông nên \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}.90^\circ  = 45^\circ \)

Vì \(\widehat {{A_2}} = \widehat {{B_2}}( = 45^\circ )\), mà hai góc này ở vị trí so le trong nên Ax // By (Dấu hiệu nhận biết hai đường thẳng song song)

Bài 3.30 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Cho hai đường thẳng phân biệt a, b cùng vuông góc với đường thẳng c; d là một đường thẳng khác c và d vuông góc với a. Chứng minh rằng:

a) a // b;                                  b) c // d;                             c) b\( \bot \)d

Lời giải: 

bai 330 trang 58 toan 7 Trường THCS Phan Chu Trinh

a) Vì \(c \bot a;c \bot b \Rightarrow a//b\) ( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

b) Vì \(a \bot c;a \bot d \Rightarrow c//d\)( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

c) Vì \(b \bot c;c//d \Rightarrow b \bot c\) ( đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)

Bài 3.31 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Cho Hình 3.49. Chứng minh rằng:

a) d // BC; b) d \( \bot \)AH; c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?

bai 331 toan 7 kntt Trường THCS Phan Chu Trinh

Lời giải: 

giai bai 331 toan 7 kntt Trường THCS Phan Chu Trinh

a) Vì \(\widehat {{A_1}} = \widehat {{C_1}}( = 50^\circ )\), mà 2 góc này ở vị trí so le trong nên d // BC (Dấu hiệu nhận biết hai đường thẳng song song ) (đpcm)

b) Vì d // BC, mà AH \( \bot \)BC nên d \( \bot \)BC ( Đường thẳng vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng kia)

c) Trong các kết luận trên, kết luận a) được suy ra từ dấu hiệu nhận biết hai đường thẳng song song

Kết luận b) được suy ra từ tính chất của hai đường thẳng song song.

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…