Giải bài 30, 31, 32, 33 trang 83 SBT Toán 8 tập 1

Giải bài tập trang 83 bài 3 hình thang cân Sách bài tập (SBT) Toán 8 tập 1. Câu 30: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE…

Câu 30 trang 83 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.

Bạn đang xem bài: Giải bài 30, 31, 32, 33 trang 83 SBT Toán 8 tập 1

a. Tứ giác BDEC là hình gì ? Vì sao ?

b. Các điểm D, E ở vị trí nào thì BD = DE = EC ?

Giải:

giai bai 31 32 33 34 35 36 37 38 39 30 31 32 33 31 32 33 trang 82 83 84 sach bai tap toan 8 tap 1 8 1515342882 c2phanchutrinh.edu.vn

a. AD = AE (gt)

⇒ ∆ ADE cân tại A

\( \Rightarrow \widehat {ADE} = {{{{180}^0} – \widehat A} \over 2}\) 

∆ ABC cân tại A

\( \Rightarrow \widehat {ABC} = {{{{180}^0} – \widehat A} \over 2}\) 

Suy ra:  \(\widehat {ADE} = \widehat {ABC}\)

⇒ DE // BC (vì có cặp góc đồng vị bằng nhau)

Tứ giác BDEC là hình thang

\(\widehat {ABC} = \widehat {ACB}\) (tính chất tam giác cân)

Hay \(\widehat {DBC} = \widehat {ECB}\). Vậy BDEC là hình thang cân

b. Ta có: BD = DE ⇒ ∆ BDE cân tại D

\( \Rightarrow {\widehat B_1} = {\widehat E_1}\)

Mà \({\widehat E_1} = {\widehat B_2}\) (so le trong)

\( \Rightarrow {\widehat B_1} = {\widehat B_2}\)

DE = EC ⇒∆ DEC cân tại E

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)

\({\widehat D_1} = {\widehat C_2}\) (so le trong)

\( \Rightarrow {\widehat C_1} = {\widehat C_2}\)

Vậy khi BE là tia phân giác của \(\widehat {ABC}\), CD là tia phân giác của \(\widehat {ACB}\) thì BD = DE = EC.

 


Câu 31 trang 83 Sách bài tập (SBT) Toán 8 tập 1

Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD, BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực của hai đáy.

Giải:

giai bai 31 32 33 34 35 36 37 38 39 30 31 32 33 31 32 33 trang 82 83 84 sach bai tap toan 8 tap 1 9 1515342882 c2phanchutrinh.edu.vn

\(\eqalign{
& \widehat {ADC} = \widehat {BCD}\,\,\,\,(gt) \cr 
& \Rightarrow \widehat {ODC} = \widehat {OCD} \cr} \) 

⇒ ∆ OCD cân tại O

⇒ OC = OD

⇒ OA + AD = OB + BC

Mà AD = BC (tính chất hình thang cân)

⇒ OA = OB

Xét ∆ ADC và ∆ BCD :

AD = BC (chứng minh trên)

AC = BD (tính chất hình thang cân)

CD cạnh chung

Do đó: ∆ ADC = ∆ BCD (c.c.c)

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)

⇒ ∆ EDC cân tại E

⇒ EC = ED nên E thuộc đường trung trực của CD

OC = OD nên O thuộc đường trung trực của CD

E≢ O. Vậy OE là đường trung trực của CD.

BD = AC (chứng minh trên)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

E≢ O. Vậy OE là đường trung trực của AB.

 


Câu 32 trang 83 Sách bài tập (SBT) Toán 8 tập 1

a. Hình thang cân ABCD có đáy nhỏ AB = b, đáy lớn CD = a, đường cao AH.

Chứng minh rằng  (a và b có cùng đơn vị đo)

b. Tính đường cao của hình thang cân có hai đáy 10cm, 26cm và cạnh bên 17cm

Giải:

giai bai 31 32 33 34 35 36 37 38 39 30 31 32 33 31 32 33 trang 82 83 84 sach bai tap toan 8 tap 1 10 1515342882 c2phanchutrinh.edu.vn

a. Kẻ đường cao BK

Xét hai tam giác vuông AHD và BKC, ta có:

\(\widehat {AHB} = \widehat {BKC} = {90^0}\) 

AD = BC (tính chất hình thang cân)

\(\widehat D = \widehat C\)  (gt)

Do đó: ∆ AHD = ∆ BKC (cạnh huyền, góc nhọn)

⇒ HD = KC

Hình thang ABKH có hai cạnh bên song song nên AB = HK

a−b = DC – AB = DC – HK = HD + KC = 2HD

\( \Rightarrow HD = {{a – b} \over 2}\)

\(HD = DC-HD = a – {{a – b} \over 2} = {{a + b} \over 2}\)

 b. \(HD = {{CD – AB} \over 2} = {{26 – 10} \over 2} = 8\left( {cm} \right)\)

Trong tam giác vuông AHD có \(\widehat {AHD} = {90^0}\)

\(A{D^2} = A{H^2} + H{D^2}\) (định lí Pi-ta-go)

\(\eqalign{
& \Rightarrow A{H^2} = A{D^2} – H{D^2} \cr 
& A{H^2} = {17^2} – {8^2} = 289 – 64 = 225 \cr 
& AH = 15(cm) \cr} \)

 


Câu 33 trang 83 Sách bài tập (SBT) Toán 8 tập 1

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

Giải:

giai bai 31 32 33 34 35 36 37 38 39 30 31 32 33 31 32 33 trang 82 83 84 sach bai tap toan 8 tap 1 11 1515342882 c2phanchutrinh.edu.vn

Ta có: AD = BC = 3 (cm)  (tính chất hình thang cân)

\(\widehat {ABD} = \widehat {BDC}\) (so le trong)

\(\eqalign{
& \widehat {ADB} = \widehat {BDC}(gt) \cr 
& \Rightarrow \widehat {ABD} = \widehat {ADB} \cr} \)

⇒ ∆ ABD cân tại A

⇒ AB = AD = 3 (cm)

∆ BDC vuông tại B

\( \Rightarrow \widehat {BDC} + \widehat C = {90^0}\)

\(\widehat {ADC} = \widehat C\) (gt)

Mà \(\widehat {BDC} = {1 \over 2}\widehat {ADC}\) nên  \(\widehat {BDC} = {1 \over 2}\widehat C\)

\(\widehat C + {1 \over 2}\widehat C = {90^0} \Rightarrow \widehat C = {60^0}\)

Từ B kẻ đường thẳng song song AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

\(\widehat {BEC} = \widehat {ADC}\)  (đồng vị )

Suy ra:  \(\widehat {BEC} = \widehat C\)

⇒ ∆ BEC cân tại B có \(\widehat C = {60^0}\)

⇒ ∆ BEC đều

⇒ EC = BC = 3 (cm)

CD = CE + ED = 3 + 3 = 6 (cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3+3 +6 +3=15 (cm)

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.