Giải bài 30, 31 trang 59 SGK Toán 9 tập 1

Giải bài tập trang 59 bài 5 hệ số góc của hàm số y = ax + b (a≠0) SGK Toán 9 tập 1. Câu 30: Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau…

Bài 30 trang 59 sgk Toán 9 tập 1

Bài 30

Bạn đang xem bài: Giải bài 30, 31 trang 59 SGK Toán 9 tập 1

a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau:

\(y = {1 \over 2}x + 2\);                                      \(y = -x + 2\)

b) Gọi giao điểm của hai đường thẳng \(y = {1 \over 2}x + 2\)  và  \(y = -x + 2\) với trục hoành theo thứ tự là \(A, B\) và gọi giao điểm của hai đường thẳng đó là \(C\). Tính các góc của tam giác \(ABC\) (làm tròn đến độ).

c) Tính chu vi và diện tích của tam giác \(ABC\) (đơn vị đo trên các trục tọa độ là xentimét)

Giải:

a) Đồ thị được vẽ như hình dưới:

  giai bai 30 31 trang 59 sgk toan 9 tap 1 1 1516368663 c2phanchutrinh.edu.vn

                     

b) Bằng hình vẽ và các phép tính, ta tìm được tọa độ của \(3\) điểm \(A, B, C\) đó là:

\(A(-4;0);B(2;0);C(0;2)\)

Ta có: \(OB=OC\) nên tam giác \(COB\) vuông cân tại \(O\) (\(O\) là gốc tọa độ) nên:

\(\widehat{B}=45^o\)

Dùng công thức lượng giác đối với tam giác \(AOC\) vuông tại \(O\), ta có:

\(\tan A=\frac{OC}{OA}=\frac{1}{2}\Rightarrow \widehat{A}\approx 26,56^o\)

\(\widehat{C}=180^o-\widehat{A}-\widehat{B}\approx 108,44^o\)

c) Ta có:

\(AB = 6 (cm)\)

\(AC=\sqrt{AO^2+OC^2}=2\sqrt{5}(cm)\)

\(BC=\sqrt{BO^2+OC^2}=2\sqrt{2}(cm)\)

Chu vi tam giác là:

\(P=AB+BC+AC=2(3+\sqrt{5}+\sqrt{2})(cm)\)

Diện tích tam giác:

\(S=\frac{1}{2}CO.AB=\frac{1}{2}.2.6=6(cm^2)\)

 


Bài 31 trang 59 sgk Toán 9 tập 1

a) Vẽ đồ thị của hàm số :

\(y = x + 1;\,\,\,y = {1 \over {\sqrt 3 }}x + \sqrt 3 ;\,\,\,y = \sqrt 3 x – \sqrt 3\)

b) Gọi  \(\alpha ,\,\,\beta ,\,\,\,\gamma \)  lần lượt là các góc tạo bởi các đường thẳng trên và trục Ox.

Chứng minh rằng \(tg\alpha  = 1,\,\,\,tg\beta  = {1 \over {\sqrt 3 }};\,\,\,tg\gamma  = \sqrt 3\)

Tính số đo các góc α, β, ɣ.

Giải:

a) Đồ thị như hình bên.

      giai bai 30 31 trang 59 sgk toan 9 tap 1 2 1516368663 c2phanchutrinh.edu.vn

                                       

b) Ta có:

\(\eqalign{
& tg\alpha = {{OE} \over {OA}} = 1;\,\, \cr
& tg\beta = {{OP} \over {OB}} = {{\sqrt 3 } \over 3} = {1 \over {\sqrt 3 }};\, \cr
& \,\,tg\gamma = {{OD} \over {OC}} = {{\sqrt 3 } \over 1} = \sqrt 3 \cr
& \Rightarrow \alpha = {45^0},\,\,\beta = {30^0};\,\,\,\,\gamma = {60^0} \cr} \)

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.