Giải bài 32, 33, 34, 35 trang 33 SBT Toán 8 tập 1

Giải bài tập trang 33 bài 7 phép nhân các phân thức đại số Sách bài tập (SBT) Toán 8 tập 1. Câu 32: Áp dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức…

Câu 32 trang 33 Sách bài tập (SBT) Toán 8 tập 1

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức:

Bạn đang xem bài: Giải bài 32, 33, 34, 35 trang 33 SBT Toán 8 tập 1

a. \({{{x^3}} \over {x + 1975}}.{{2x + 1954} \over {x + 1}} + {{{x^3}} \over {x + 1975}}.{{21 – x} \over {x + 1}}\)

b. \({{19x + 8} \over {x – 7}}.{{5x – 9} \over {x + 1945}} – {{19x + 8} \over {x – 7}}.{{4x – 2} \over {x + 1945}}\)

Giải:

a. \({{{x^3}} \over {x + 1975}}.{{2x + 1954} \over {x + 1}} + {{{x^3}} \over {x + 1975}}.{{21 – x} \over {x + 1}}\)\( = {{{x^3}} \over {x + 1975}}.\left( {{{2x + 1954} \over {x + 1}} + {{21 – x} \over {x + 1}}} \right)\)

\( = {{{x^3}} \over {x + 1975}}.{{x + 1975} \over {x + 1}} = {{{x^3}\left( {x + 1975} \right)} \over {\left( {x + 1975} \right)\left( {x + 1} \right)}} = {{{x^3}} \over {x + 1}}\)

b. \({{19x + 8} \over {x – 7}}.{{5x – 9} \over {x + 1945}} – {{19x + 8} \over {x – 7}}.{{4x – 2} \over {x + 1945}}\)\( = {{19x + 8} \over {x – 7}}.\left( {{{5x – 9} \over {x + 1945}} – {{4x – 2} \over {x + 1945}}} \right)\)

\(\eqalign{  &  = {{19x + 8} \over {x – 7}}.\left( {{{5x – 9} \over {x + 1945}} + {{2 – 4x} \over {x + 1945}}} \right) = {{19x + 8} \over {x – 7}}.{{x – 7} \over {x + 1945}} = {{\left( {19x + 8} \right)\left( {x – 7} \right)} \over {\left( {x – 7} \right)\left( {x + 1945} \right)}}  \cr  &  = {{19x + 8} \over {x + 1945}} \cr} \)


Câu 33 trang 33 Sách bài tập (SBT) Toán 8 tập 1

Tính tích x, y , biết rằng x và y thỏa mãn các đẳng thức sau (a, b là các hằng số) :

a. \(\left( {4{a^2} – 9} \right)x = 4a + 4\)với a ≠ \( \pm {3 \over 2}\) và \(\left( {3{a^3} + 3} \right)y = 6{a^2} + 9a\) với a ≠ − 1

b. \(\left( {2{a^3} – 2{b^3}} \right)x – 3b = 3a\)với a ≠ b và \(\left( {6a + 6b} \right)y = {\left( {a – b} \right)^2}\) với a ≠ − b

Chú ý rằng\({a^2} + ab + {b^2} = {a^2} + 2a.{b \over 2} + {{{b^2}} \over 4} + {{3{b^2}} \over 4} = {\left( {a + {b \over 2}} \right)^2} + {{3{b^2}} \over 4} \ge 0\).

Do đó nếu a ≠ 0 hoặc b ≠ 0 thì\({a^2} + ab + {b^2} > 0\)

Giải:

a. Vì a ≠ \( \pm {3 \over 2}\) nên\(4{a^2} – 9 \ne 0 \Rightarrow x = {{4a + 4} \over {4{a^2} – 9}}\)

Vì a ≠ − 1 nên \(3{a^3} + a \ne 0 \Rightarrow y = {{6{a^2} + 9a} \over {3{a^3} + a}}\)

Do đó: \(xy = {{4a + 4} \over {4{a^2} – 9}}.{{6{a^2} + 9a} \over {3{a^3} + 3}} = {{4\left( {a + 1} \right).3a\left( {2a + 3} \right)} \over {\left( {2a + 3} \right)\left( {2a – 3} \right).3\left( {{a^3} + 1} \right)}}\)

                \( = {{4a\left( {a + 1} \right)} \over {\left( {2a – 3} \right)\left( {a + 1} \right)\left( {{a^2} – a + 1} \right)}} = {{4a} \over {\left( {2a – 3} \right)\left( {{a^2} – a + 1} \right)}}\)

b. Vì a ≠ b nên \(2{a^3} – 2{b^3} \ne 0 \Rightarrow x = {{3a + 3b} \over {2{a^3} – 2{b^3}}}\)

Vì a ≠ − b nên \(6a + 6b \ne 0 \Rightarrow y = {{{{\left( {a – b} \right)}^2}} \over {6a + 6b}}\)

Do đó: \(xy = {{3a + 3b} \over {2{a^3} – 2{b^3}}}.{{{{\left( {a – b} \right)}^2}} \over {6a + 6b}} = {{3\left( {a + b} \right){{\left( {a – b} \right)}^2}} \over {2\left( {{a^3} – {b^3}} \right).6\left( {a + b} \right)}}\)

               \( = {{{{\left( {a – b} \right)}^2}} \over {4\left( {a – b} \right)\left( {{a^2} + ab + {b^2}} \right)}} = {{a – b} \over {4\left( {{a^2} + ab + {b^2}} \right)}}\)


Câu 34 trang 33 Sách bài tập (SBT) Toán 8 tập 1

Rút gọn biểu thức:

a. \({{{x^4} + 15x + 7} \over {2{x^3} + 2}}.{x \over {14{x^2} + 1}}.{{4{x^3} + 4} \over {{x^4} + 15x + 7}}\)

b. \({{{x^7} + 3{x^2} + 2} \over {{x^3} – 1}}.{{3x} \over {x + 1}}.{{{x^2} + x + 1} \over {{x^7} + 3{x^2} + 2}}\)

Giải:

a. \({{{x^4} + 15x + 7} \over {2{x^3} + 2}}.{x \over {14{x^2} + 1}}.{{4{x^3} + 4} \over {{x^4} + 15x + 7}}\)

\( = {{\left( {{x^4} + 15x + 7} \right).x.\left( {4{x^3} + 4} \right)} \over {\left( {2{x^3} + 2} \right).\left( {14{x^2} + 1} \right).\left( {{x^4} + 15x + 7} \right)}} = {{4x\left( {{x^3} + 1} \right)} \over {2\left( {{x^3} + 1} \right)\left( {14{x^2} + 1} \right)}} = {{2x} \over {14{x^2} + 1}}\)

b. \({{{x^7} + 3{x^2} + 2} \over {{x^3} – 1}}.{{3x} \over {x + 1}}.{{{x^2} + x + 1} \over {{x^7} + 3{x^2} + 2}}\)\( = {{\left( {{x^7} + 3{x^2} + 2} \right).3x.\left( {{x^2} + x + 1} \right)} \over {\left( {{x^3} – 1} \right)\left( {x + 1} \right)\left( {{x^7} + 3{x^2} + 2} \right)}}\)

\( = {{3x\left( {{x^2} + x + 1} \right)} \over {\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)\left( {x + 1} \right)}} = {{3x} \over {\left( {x – 1} \right)\left( {x + 1} \right)}}\)


Câu 35 trang 33 Sách bài tập (SBT) Toán 8 tập 1

Đố: Đố em điền được một phân thức vào chỗ trống trong đẳng thức sau :

\({1 \over x}.{x \over {x + 1}}.{{x + 1} \over {x + 2}}.{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 4}}.{{x + 4} \over {x + 5}}.{{x + 5} \over {x + 6}}.{{x + 6} \over {x + 7}}.{{x + 7} \over {x + 8}}.{{x + 8} \over {x + 9}}.{{x + 9} \over {x + 10}}…. = 1\)

Giải:

\({1 \over x}.{x \over {x + 1}}.{{x + 1} \over {x + 2}}.{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 4}}.{{x + 4} \over {x + 5}}.{{x + 5} \over {x + 6}}.{{x + 6} \over {x + 7}}.{{x + 7} \over {x + 8}}.{{x + 8} \over {x + 9}}.{{x + 9} \over {x + 10}}.{{x + 10} \over 1} = 1\)

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…