Giải bài 33, 34, 35, 36 trang 123 SGK Toán 7

Giải bài tập trang 123 bài 5 Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (g.c.g) Sách giáo khoa (SGK) Toán 7. Câu 33: Vẽ tam giác ABC biết AC…

Bài 33 trang 123 – Sách giáo khoa toán 7 tập 1

Vẽ tam giác ABC biết AC=2cm,  \(\widehat{A}\)= 900 \(\widehat{C}\) = 600

Bạn đang xem bài: Giải bài 33, 34, 35, 36 trang 123 SGK Toán 7

Giải:

Cách vẽ: 

– Vẽ đoạn AC=2cm,

– Trên cùng một nửa mặt phẳng bờ AC vẽ tia Ax và Cy sao cho \(\widehat{CAx}\)= 900,

 \(\widehat{ACy}\)=60

Hai tia cắt nhau ở B. tạo thành tam giác ABC cần vẽ. 

1 1518028746 7 4 2014 2 13 05 pm Trường THCS Phan Chu Trinh


Bài 34 trang 123 – Sách giáo khoa toán 7 tập 1

Trên mỗi hình 98,99 có tam giác nào bằng nhau? Vì sao?

2 1518028746 bai a 4 Trường THCS Phan Chu Trinh

Giải:

Xem hình 98)

\(∆ABC\) và \(∆ABD\) có: 

+) \(\widehat{CAB}\)=\(\widehat{DAB}\) (gt)

=) \(AB\) là cạnh chung.

+) \(\widehat{ABC}\)=\(\widehat{ABD}\)(gt)

Suy ra \(∆ABC=∆ABD\) (g.c.g)

Xem hình 99)

Ta có:

\(\widehat{B_{1}}\)+\(\widehat{B_{2}}=180^0\)  (Hai góc kề bù).

\(\widehat{C _{1}}\)+ \(\widehat{C _{2}}=180^0\)  (Hai góc kề bù)

Mà \(\widehat{B_{2}}\)=\(\widehat{C _{2}}\)  (gt)  nên \(\widehat{B_{1}}\)=\(\widehat{C _{1}}\)

* \(∆ABD\) và \(∆ACE\) có:

+) \(\widehat{B_{1}}\)=\(\widehat{C _{1}}\) (cmt)

+) \(BD=EC\)  (gt)

+) \(\widehat{D }\) = \(\widehat{E }\)  (gt)

Suy ra \(∆ABD=∆ACE\)  (g.c.g)

\(DC=DB+BC\)

\(EB=EC+CB\)

Do đó: \(DC=EB\)

* \(∆ADC\) và \(∆AEB\) có:

+) \(\widehat{D }\)=\(\widehat{E }\)  (gt)

+) \(\widehat{C _{2}}\)=\(\widehat{B_{2}}\)  (gt)

+) \(DC=EB\)  (cmt)

Suy ra \(∆ADC=∆AEB\) (g.c.g)

 


Bài 35 trang 123 – Sách giáo khoa toán 7 tập 1

Cho góc \(xOy\) khác góc bẹt, \(Ot\) là tia phân giác của góc đó. Qua \(H\) thuộc tia \(Ot\) , kẻ  đường vuông góc với \(Ot\), nó cắt \(Ox\) và \(Oy\)  theo thứ tự  \(A\) và \(B\).

a) Chứng minh rằng \(OA=OB\).

b ) Lấy điểm \(C\) thuộc tia \(Ot\), chứng minh rằng \(CA=CB\) và \(\widehat{OAC }\)= \(\widehat{OBC }\).

Giải

3 1518028746 bai a 2 Trường THCS Phan Chu Trinh

a) Xét \(∆AOH\) và  \(∆BOH\) có:

+) \(\widehat{AOH}=\widehat{BOH}\) (vì \(Ot\) là phân giác)

+) \(OH\) là cạnh chung

+) \(\widehat {AHO} = \widehat {BHO}\,\,\left( { = {{90}^0}} \right)\)

 Suy ra \(∆AOH =∆BOH\) ( g.c.g)

Suy ra \(OA=OB\) (hai cạnh tương ứng).

b) Xét  \(∆AOC\) và \(∆BOC\) có:

+) \(OA=OB\) (cmt)

+) \(\widehat{AOC}=\widehat{BOC}\)  (gt)

+) \(OC\) cạnh chung.

Suy ra  \(∆AOC= ∆BOC\) (c.g.c)

Suy ra: \(CA=CB\) ( hai cạnh tương ứng)

\(\widehat{OAC }= \widehat{OBC }\)  ( hai góc tương ứng).

 


Bài 36 trang 123 – Sách giáo khoa toán 7 tập 1

Trên hình 100 ta có OA=OB, OAC=OBD.

Chứng minh rằng AC=BD.

4 1518028746 7 4 2014 2 11 47 pm Trường THCS Phan Chu Trinh

Giải:

Xét ∆OAC  và ∆OBD, có:

\(\widehat{OAC}\)=\(\widehat{OBD}\)(gt)

OA=OB(gt)

\(\widehat{O}\) chung.

Nên ∆OAC=∆OBD(g.c.g)

Suy ra: AC=BD

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…