Giải bài 36, 37, 38, 39 trang 82, 83 SGK Toán lớp 9 tập 2

Giải bài tập trang 82, 83 bài 5 góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn SGK Toán lớp 9 tập 2. Câu 36: Chứng minh rằng…

Bài 36 trang 82 sgk Toán lớp 9 tập 2

Bài 36. Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\). Gọi \(M, N\) lần lượt là điểm chính giữa của cung \(AB\) và cung \(AC\). Đường thẳng \(MN\) cắt dây \(AB\) tại \(E\) và cắt dây \(AC\) tại \(H\). Chứng minh rằng tam giác \(AEH\) là tam giác cân.

Bạn đang xem bài: Giải bài 36, 37, 38, 39 trang 82, 83 SGK Toán lớp 9 tập 2

Hướng dẫn giải:

giai bai 36 37 38 39 trang 82 83 sgk toan lop 9 tap 2 1 1516383924 c2phanchutrinh.edu.vn

Ta có: \(\widehat {AHM}\)= \(\frac{sđ\overparen{AM}+sđ\overparen{NC}}{2}\)     (1)

 

           \(\widehat {AEN}\)= \(\frac{sđ\overparen{MB}+sđ\overparen{AN}}{2}\)           (2)

(Vì  \widehat {AHM}\)và  \(\widehat {AEN}\)là các góc có đỉnh cố định ở bên trong đường tròn).

Theo gỉả thiết thì:

\(\overparen{AM}=\overparen{MB}   (3)\)

\(\overparen{NC}=\overparen{AN}    (4)\)

Từ (1),(2), (3), (4), suy ra \(\widehat {AHM}\)= \(\widehat {AEN}\) do đó \(∆AEH\) là tam giác cân.

 


Bài 37 trang 82 sgk Toán lớp 9 tập 2

Bài 37. Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\) bằng nhau. Trên cung nhỏ \(AC\) lấy một điểm \(M\). Gọi \(S\) là giao điểm của \(AM\) và \(BC\). Chứng minh: \(\widehat {ASC}\)=\(\widehat {MCA}\)

Hướng dẫn giải:

giai bai 36 37 38 39 trang 82 83 sgk toan lop 9 tap 2 2 1516383924 c2phanchutrinh.edu.vn

Ta có: \(\widehat {ASC}\)\(\frac{sđ\overparen{AB}+sđ\overparen{MC}}{2}\)  (1)

(\(\widehat {ASC}\) là góc có đỉnh nằm bên ngoài đường tròn \((O)\))

và \(\widehat {MCA}\)=\(\frac{sđ\overparen{AM}}{2}\)   (2)

(góc nội tiếp chắn cung \(\overparen{AM}\))

Theo giả thiết thì:

     \(AB = AC → \)\(\overparen{AB}=\overparen{AC}\)   (3)

Từ (1), (2), (3) suy ra: \(\overparen{AB}-\overparen{MC}=\overparen{AC}-\overparen{MC}=\overparen{AM}\)

Từ đó \(\widehat {ASC}=\widehat {MCA}\).

 

Bài 38 trang 82 sgk Toán lớp 9 tập 2

Bài 38. Trên một đường tròn, lấy liên tiếp ba cung \(AC, CD, DB\) sao cho

\(sđ\overparen{AC}\)=\(sđ\overparen{CD}\)=\(sđ\overparen{DB}\)=\(60^0\). Hai đường thẳng \(AC\) và \(BD\) cắt nhau tại \(E\). Hai tiếp tuyến của đường tròn tại \(B\) và \(C\) cắt nhau tại \(T\). Chứng minh rằng:

a) \(\widehat {AEB}=\widehat {BTC}\);

b) \(CD\) là phân giác của \(\widehat{BTC}\)

Hướng dẫn giải:

giai bai 36 37 38 39 trang 82 83 sgk toan lop 9 tap 2 3 1516383924 c2phanchutrinh.edu.vn

a) Ta có \(\widehat{AEB}\) là góc có đỉnh ở bên ngoài đường tròn nên:

\(\widehat{AEB}\)=\(\frac{sđ\overparen{AB}-sđ\overparen{CD}}{2}\)=\({{{{180}^0} – {{60}^0}} \over 2} = {60^0}\)

và \(\widehat{BTC}\)  cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:

\(\widehat{BTC}\)=\(\frac{\widehat {BAC}-\widehat {BDC}}{2}\)=\({{({{180}^0} + {{60}^0}) – ({{60}^0} + {{60}^0})} \over 2} = {60^0}\)

  Vậy \(\widehat {AEB} =\widehat {BTC}\) 

b)  \(\widehat {DCT} \) là góc tạo bởi tiếp tuyến và dây cung nên:

         \(\widehat {DCT}=\frac{sđ\overparen{CD}}{2}\)

\(\widehat {DCB}\) là góc nội tiếp trên 

          \(\widehat {DCB}=\frac{sđ\overparen{DB}}{2}={{{{60}^0}} \over 2} = {30^0}\)

Vậy  \(\widehat {DCT}=\widehat {DCB}\)  hay  \(CD\) là phân giác của \(\widehat {BCT} \)

 


Bài 39 trang 83 sgk Toán lớp 9 tập 2

Bài 39. Cho \(AB\) và \(CD\) là hai đường kính vuông góc của đường tròn \((O)\). Trên cung nhỏ \(BD\) lấy một điểm \(M\). Tiếp tuyến tại \(M\) cắt tia \(AB\) ở \(E\), đoạn thẳng \(CM\) cắt \(AB\) ở \(S\).Chứng minh \(ES = EM\).

Hướng dẫn giải:

Ta có \(\widehat{MSE}\) = \(\frac{sđ\overparen{CA}+sđ\overparen{BM}}{2}\) (1)

( vì \(\widehat{MSE}\) là góc có đỉnh S ở trong đường tròn (O))

\(\widehat{CME}\) = \(\frac{sđ\overparen{CM}}{2}\)= \(\frac{sđ\overparen{CB}+sđ\overparen{BM}}{2}\) (2)

(\(\widehat{CME}\) là góc tạo bởi tiếp tuyến và dây cung).

Theo giả thiết         \(\overparen{CA}=\overparen{CB}\)           (3)

Từ (1), (2), (3) ta có: \(\widehat{MSE}\) = \(\widehat{CME}\) từ đó \(∆ESM\) là tam giác cân và \(ES = EM\)

giai bai 36 37 38 39 trang 82 83 sgk toan lop 9 tap 2 4 1516383924 c2phanchutrinh.edu.vn

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.