Giải bài 36, 37, 38 trang 10, 11 SBT Toán 9 tập 1

Giải bài tập trang 10, 11 bài 4 liên hệ giữa phép chia và phép khai phương Sách bài tập (SBT) Toán 9 tập 1. Câu 36: Áp dụng quy tắc khai phương một thương , hãy tính…

Câu 36 trang 10 Sách Bài Tập (SBT) Toán 9 Tập 1

Áp dụng quy tắc khai phương một thương , hãy tính:

Bạn đang xem bài: Giải bài 36, 37, 38 trang 10, 11 SBT Toán 9 tập 1

a) \(\sqrt {{9 \over {169}}} \);

b) \(\sqrt {{{25} \over {144}}} \);

c) \(\sqrt {1{9 \over {16}}} \);

d) \(\sqrt {2{7 \over {81}}} \).

Gợi ý làm bài

a) \(\sqrt {{9 \over {169}}}  = {{\sqrt 9 } \over {\sqrt {169} }} = {3 \over {13}}\)

b) \(\sqrt {{{25} \over {144}}}  = {{\sqrt {25} } \over {\sqrt {144} }} = {5 \over {12}}\)

c) \(\sqrt {1{9 \over {16}}}  = \sqrt {{{25} \over {16}}}  = {{\sqrt {25} } \over {\sqrt {16} }} = {5 \over 4}\)

d) \(\sqrt {2{7 \over {81}}}  = \sqrt {{{169} \over {81}}}  = {{\sqrt {169} } \over {\sqrt {81} }} = {{13} \over 9}\)

 


Câu 37 trang 11 Sách Bài Tập (SBT) Toán 9 Tập 1

Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a) \({{\sqrt {2300} } \over {\sqrt {23} }}\)

b) \({{\sqrt {12,5} } \over {\sqrt {0,5} }}\)

c) \({{\sqrt {192} } \over {\sqrt {12} }}\)

d) \({{\sqrt 6 } \over {\sqrt {150} }}\)

Gợi ý làm bài

a) \({{\sqrt {2300} } \over {\sqrt {23} }} = \sqrt {{{2300} \over {23}}}  = \sqrt {100}  = 10\)

b) \({{\sqrt {12,5} } \over {\sqrt {0,5} }} = \sqrt {{{12,5} \over {0,5}}}  = \sqrt {25}  = 5\)

c) \({{\sqrt {192} } \over {\sqrt {12} }} = \sqrt {{{192} \over {12}}}  = \sqrt {16}  = 4\)

d) \({{\sqrt 6 } \over {\sqrt {150} }} = \sqrt {{6 \over {150}}}  = \sqrt {{1 \over {50}}}  = {1 \over 5}\)

 


Câu 38 trang 11 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho các biểu thức:

A= \(\sqrt {{{2x + 3} \over {x – 3}}} \) và B = \({{\sqrt {2x + 3} } \over {\sqrt {x – 3} }}\)

a) Tìm x để A có nghĩa. Tìm x để B có nghĩa .

b) Với giá trị nào của x thì A=B ?

Gợi ý làm bài

a) Ta có: \(\sqrt {{{2x + 3} \over {x – 3}}} \) có nghĩa khi và chỉ khi \({{2x + 3} \over {x – 3}} \ge 0\)

Trường hợp 1: 

\(\eqalign{
& \left\{ \matrix{
2x + 3 \ge 0 \hfill \cr 
x – 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x \ge 3 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge – {3 \over 2} \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3 \cr} \)

Trường hợp 2: 

\(\eqalign{
& \left\{ \matrix{
2x + 3 \le 0 \hfill \cr 
x – 3 2x x & \Leftrightarrow \left\{ \matrix{
x \le – {3 \over 2} \hfill \cr 
x

Vậy với x > 3 hoặc x \( \le \) \( – {3 \over 2}\) thì biểu thức A có nghĩa.

Ta có: \({{\sqrt {2x + 3} } \over {\sqrt {x – 3} }}\)  có nghĩa khi và chỉ khi: 

\(\eqalign{
& \left\{ \matrix{
2x – 3 \ge 0 \hfill \cr 
x – 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge – 3 \hfill \cr 
x > 3 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge – {3 \over 2} \hfill \cr 
x > 3 \hfill \cr} \right. \Leftrightarrow x > 3 \cr} \)

Vậy x > 3 thì biểu thức B có nghĩa.

b) Với x > 3 thì A và B đồng thời có nghĩa.

Vậy với x > 3 thì A = B.

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.