Giải bài 39, 40, 41, 42 trang 19 SGK Toán 8 tập 1

Giải bài tập trang 19 bài 6 Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung SGK Toán 8 tập 1. Câu 39: Phân tích các đa thức sau thành nhân tử:…

Bài 39 trang 19 sgk toán 8 tập 1

Phân tích các đa thức sau thành nhân tử:

Bạn đang xem bài: Giải bài 39, 40, 41, 42 trang 19 SGK Toán 8 tập 1

a) 3x – 6y;                                       b) \(\frac{2}{5}\)x2 + 5x3 + x2y;

c) 14x2y – 21xy2 + 28x2y2;             d) \(\frac{2}{5}\)x(y – 1) – \(\frac{2}{5}\)y(y – 1);

e) 10x(x – y) – 8y(y – x).

Bài giải:

a) 3x – 6y = 3 . x – 3 . 2y = 3(x – 2y)

b) \(\frac{2}{5}\)x2 + 5x3 + x2y = x2 (\(\frac{2}{5}\) + 5x + y)

c) 14x2y – 21xy2 + 28x2y2 = 7xy . 2x – 7xy . 3y + 7xy . 4xy = 7xy(2x – 3y + 4xy)

d) \(\frac{2}{5}\)x(y – 1) – \(\frac{2}{5}\)y(y – 1) = \(\frac{2}{5}\)(y – 1)(x – y)

e) 10x(x – y) – 8y(y – x) =10x(x – y) – 8y[-(x – y)]

                                    = 10x(x – y) + 8y(x – y)

                                    = 2(x – y)(5x + 4y)


Bài 40 trang 19 sgk toán 8 tập 1

Tính giá trị biểu thức:

a) 15 . 91,5 + 150 . 0,85;

b) x(x – 1) – y(1 – x) tại x = 2001 và y = 1999.

Bài giải:

a) 15 . 91,5 + 150 . 0,85 = 15 . 91,5 + 15 . 8,5

                                    = 15(91,5 + 8,5) = 15 . 100 = 1500

b) x(x – 1) – y(1 – x) = x(x – 1) – y[-(x – 1)]

                              = x(x – 1) + y(x – 1)

                              = (x – 1)(x + y)

Tại x = 2001, y = 1999 ta được:

(2001 – 1)(2001 + 1999) = 2000 . 4000 = 8000000


Bài 41 trang 19 sgk toán 8 tập 1

 Tìm x, biết:

a) 5x(x  -2000) – x + 2000 = 0;

b) x3 – 13x = 0

Bài giải:

a) 5x(x  -2000) – x + 2000 = 0

    5x(x  -2000) – (x – 2000) = 0

   (x – 2000)(5x – 1) = 0

Hoặc 5x – 1 = 0 → 5x = 1 → x = \(\frac{1}{5}\)

Vậy x = \(\frac{1}{5}\); x = 2000

b) x3 – 13x = 0

x(x2 – 13) = 0

Hoặc x = 0

Hoặc x2 – 13 = 0 → x2 = 13 →  \(x = ±\sqrt {13}\)

Vậy x = 0; \(x = ±\sqrt {13}\)


Bài 42 trang 19 sgk toán 8 tập 1

Chứng minh rằng 55n + 1 – 55n chia hết cho 54 (với n là số tự nhiên)

Bài giải:

55n + 1 – 55n chia hết cho 54 (n ∈ N)

Ta có 55n + 1 – 55n = 55n . 55 – 55n

                             = 55n (55 – 1) 

                             = 55n . 54

Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.

Vậy 55n + 1 – 55n chia hết cho 54.

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.