Giải bài 4.1, 4.2, 4.3 trang 162 SBT Toán 8 tập 1

Giải bài tập trang 162 bài diện tích hình thang Sách bài tập (SBT) Toán 8 tập 1. Câu 4.1: Tính diện tích của hình được cho trong mỗi trường hợp sau…

Câu 4.1 trang 162 Sách bài tập (SBT) Toán 8 tập 1

Tính diện tích của hình được cho trong mỗi trường hợp sau:

Bạn đang xem bài: Giải bài 4.1, 4.2, 4.3 trang 162 SBT Toán 8 tập 1

a. Hình thang ABCD, đáy lớn AB = 10cm, đáy nhỏ CD = 6cm và đường cao DE = 5cm.

b. Hình thang cân ABCD, đáy nhỏ CD = 6cm, đường cao DH = 4cm và cạnh bên AD = 5cm.

Giải:                                                              

giai bai 32 33 34 35 36 37 38 39 40 41 41 42 43 trang 161 162 sach bai tap sbt toan 8 tap 1 11 1515344690 c2phanchutrinh.edu.vn

a. Áp dụng công thức tính diện tích hình thang.

\(S = {{a + b} \over 2}.h = {{10 + 6} \over 2}.5 = 40(c{m^2})\)

b. Xét hình thang cân ABCD có AB // CD

Đáy nhỏ CD = 6cm, cạnh bên AD = 5cm

Đường cao DH = 4cm. Kẻ CK ⊥ AB

Ta có tứ giác CDHK là hình chữ nhật

HK = CD = 6cm

∆ AHD vuông tại H. Theo định lý Pi-ta-go ta có: \(A{D^2} = A{H^2} + D{H^2}\)

\( \Rightarrow {\rm A}{{\rm H}^2} = A{D^2} – D{H^2} = {5^2} – {4^2} = 25 – 16 = 9 \Rightarrow AH = 3cm\)

Xét hai tam giác vuông DHA và CKB :

\(\widehat {DHA} = \widehat {CKB} = 90^\circ \)

AD = BC (tính chất hình thang cân)

\(\widehat A = \widehat B\)  (gt)

Do đó: ∆ DHA = ∆ CKB (cạnh huyền, góc nhọn)

⇒ KB = AH = 3 (cm)

AB = AH + HK + KB = 3+ 6+ 3 = 12 (cm)

\({S_{ABCD}} = {{AB + CD} \over 2}.DH = {{12 + 6} \over 2}.4 = 36(c{m^2})\)


Câu 4.2 trang 162 Sách bài tập (SBT) Toán 8 tập 1

Cho hình thang ABCD có đáy nhỏ CD và đáy lớn AB

a. Hãy vé tam giác ADE mà diện tích của nó bằng diện tích hình thang đã cho. Từ đó suy ra cách tính diện tích hình thang dựa vào độ dài hai cạnh đáy và độ dài đường cao của hình thang.

b. Hãy chia hình thang đã cho thành hai phần có diện tích bằng nhau bằng một đường thẳng đi qua đỉnh D của nó.

Giải:                                                                   

giai bai 32 33 34 35 36 37 38 39 40 41 41 42 43 trang 161 162 sach bai tap sbt toan 8 tap 1 12 1515344690 c2phanchutrinh.edu.vn

a. Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.

Vì AB // CD \( \Rightarrow \widehat {ABC} + 180^\circ   \Rightarrow {\rm A},{\rm B},{\rm E}\) thẳng hàng

\(\widehat {ABF} + \widehat {DFC} = 180^\circ \)

⇒ D, F, E thẳng hàng

∆ DFC = ∆ EFB (g.c.g)

\({S_{DFC}} = {S_{EFB}}\)

Suy ra: \({S_{ABCD}} = {S_{ADE}}\)

∆ DFC = ∆ EFB⇒ DC = BE

AE = AB + BE = AB + DC

\({S_{ADE}} = {1 \over 2}DH.AE = {1 \over 2}DH.\left( {AB + CD} \right)\)

Vậy : \({S_{ABCD}} = {1 \over 2}DH.\left( {AB + CD} \right)\)

b. Dựa trên hình vẽ câu a ta chọn điểm K là trung điểm AE.

Ta nối DK cắt hình thang theo đường DK ta có hai phần diện tích bằng nhau:

Một phần là ∆ ADK có \(AK = {{AB + CD} \over 2}\)

Một phần là hình thang BCDK có hai đáy CD + BK = \({{AB + CD} \over 2}\)

Và có chiều cao bằng nhau nên có diện tích bằng nhau.


Câu 4.3 trang 162 Sách bài tập (SBT) Toán 8 tập 1

Cho hình bình hành ABCD có diện tích S. Trên cạnh BC lấy hai điểm M, N sao cho BM = MN = NC = \({1 \over 3}\)BC

a. Tính diện tích của tứ giác ABMD theo S

b. Từ điểm N kẻ NT song song với AB (T thuộc AC). Tính diện tích của tứ giác ABNT theo S

Giải:                                                                              

giai bai 32 33 34 35 36 37 38 39 40 41 41 42 43 trang 161 162 sach bai tap sbt toan 8 tap 1 13 1515344690 c2phanchutrinh.edu.vn

a. ∆ DMC có CM = \({2 \over 3}\)BC

Hình bình hành ABCD và ∆ DMC có chung đường cao kẻ từ đỉnh D đến BC.

Gọi độ dài đường cao là h, BC = a

Ta có diện tích hình bình hành ABCD là S = a h

\(\eqalign{  & {S_{DMC}} = {1 \over 2}h.{2 \over 3}a = {1 \over 3}ah = {1 \over 3}S  \cr  & {S_{ABMD}} = {S_{ABCD}} – {S_{DMC}} = S – {1 \over 3}S = {2 \over 3}S \cr} \)

b. \({S_{ABC}} = {1 \over 2}{S_{ABCD}} = {S \over 2}\)

\(CN = {1 \over 3}BC\), NT // AB.

Theo tính chất đường thẳng song song cách đều \( \Rightarrow CT = {1 \over 3}AC\)

∆ ABC và ∆ BTC có chung chiều cao kẻ từ đỉnh B, đáy \(CT = {1 \over 3}AC\)

\( \Rightarrow {S_{BTC}} = {1 \over 3}{S_{ABC}} = {1 \over 3}.{S \over 2} = {S \over 6}\)

∆ BTC và ∆ TNC có chung chiều cao kẻ từ đỉnh T, cạnh đáy $CN = {1 \over 3}CB$

\(\eqalign{  &  \Rightarrow {S_{TNC}} = {1 \over 3}{S_{BTC}} = {1 \over 3}.{S \over 6} = {S \over {18}}  \cr  &  \Rightarrow {S_{ABNT}} = {S_{ABC}} – {S_{TNC}} = {S \over 2} – {S \over {18}} = {{9S} \over {18}} – {S \over {18}} = {{4S} \over 9} \cr} \)

 c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.