Giải bài 4, 5 trang 60, 61 SBT Toán 9 tập 1

Giải bài tập trang 60, 61 bài 1 nhắc lại và bổ sung các khái niệm về hàm số Sách bài tập (SBT) Toán 9 tập 1. Câu 4: Chứng minh rằng hàm số đồng biến trên R….

Câu 4 trang 60 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho hàm số \(y = f\left( x \right) = {2 \over 3}x + 5\) với $x \in R$

Chứng minh rằng hàm số đồng biến trên R.

Bạn đang xem bài: Giải bài 4, 5 trang 60, 61 SBT Toán 9 tập 1

Gợi ý làm bài:

Xét hàm số \(y = f\left( x \right) = {2 \over 3}x + 5\)

Với hai số \(x_1\) và \(x_2\) thuộc R, ta có:

\({{\rm{y}}_1} = f\left( {{x_1}} \right) = {2 \over 3}{x_1} + 5\)

\({{\rm{y}}_2} = f\left( {{x_2}} \right) = {2 \over 3}{x_2} + 5\)

Nếu \({x_1} 0\)

Khi đó:

\(f\left( {{x_2}} \right) – f\left( {{x_1}} \right)\)

\(= \left( {{2 \over 3}{x_2} + 5} \right) – \left( {{2 \over 3}{x_1} + 5} \right) = {2 \over 3}\left( {{x_2} – {x_1}} \right) > 0\)

Suy ra: \(f\left( {{x_2}} \right) > f\left( {{x_1}} \right)\)

Vậy hàm số đồng biến trên R.

 


Câu 5 trang 61 Sách Bài Tập (SBT) Toán 9 Tập 1

Biểu diễn các điểm sau đây trên cùng một hệ trục tọa độ. Nối theo thứ tự các điểm đã cho bằng các đoạn thẳng để được một đường gấp khúc với điểm đầu là điểm A, điểm cuối là M.

A(1; 6)

B(6; 11)

C(14; 12)

D(12; 9)

E(15; 8)

F(13; 4)

G(9; 7)

H(12; 1)

I(16; 4)

K(20; 1)

L(19; 9)

M(22; 6)

Gợi ý làm bài:

Dựng hệ trục tọa độ Oxy, rồi dựng các điểm theo tọa độ của chúng, nối theo thứ tự các điểm , ta được một đường gấp khúc như hình dưới:

giai bai 1 2 3 4 5 trang 60 61 sach bai tap toan 9 tap 1 1 1515385497 Trường THCS Phan Chu Trinh

 

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…