Giải bài 40, 41, 42, 43 trang 83 SGK Toán lớp 9 tập 2

Giải bài tập trang 83 bài 5 góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn SGK Toán lớp 9 tập 2. Câu 40: Qua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyến SA và cát tuyến SBC của đường tròn…

Bài 40 trang 83 sgk Toán lớp 9 tập 2

Bài 40. Qua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyến SA và cát tuyến SBC của đường tròn. Tia phân giác của góc BAC cắt dây BC tại D. Chứng minh SA = SD

Bạn đang xem bài: Giải bài 40, 41, 42, 43 trang 83 SGK Toán lớp 9 tập 2

Trả lời:

giai bai 40 41 42 43 trang 83 sgk toan lop 9 tap 2 1 1516384044 c2phanchutrinh.edu.vn

Có: \(\widehat {ADS}=\frac{sđ\overparen{AB}-sđ\overparen{CE}}{2}\) (định lí góc có đỉnh ở ngoài đường tròn).

\(\widehat {SAD}=\frac{1}{2} sđ\overparen{AE}\) (định lí góc giữa tia tiếp tuyến và dây cung).

Có: \(\widehat {BAE} = \widehat {EAC}\) \(\Rightarrow \) \(\overparen{BE}=\overparen{EC}\)

\(\Rightarrow\) \(sđ\overparen{AB}\)+\(sđ\overparen{EC}\)=\(sđ\overparen{AB}+sđ\overparen{BE}\)=

\(sđ\overparen{AE}\)

nên \(\widehat {ADS}=\widehat {SAD}\)\(\Rightarrow\) tam giác \(SDA\) cân tại \(S\) hay \(SA=SD\).

 


Bài 41 trang 83 sgk Toán lớp 9 tập 2

Bài 41. Qua điểm \(A\) nằm bên ngoài đường tròn \((O)\) vẽ hai cát tuyến \(ABC\) và \(AMN\) sao cho hai đường thẳng \(BN\) và \(CM\) cắt nhau tại một điểm \(S\) nằm bên trong đường tròn.

Chứng minh:

                     \(\widehat A + \widehat {B{\rm{S}}M} = 2\widehat {CMN}\)

Hướng dẫn giải:

giai bai 40 41 42 43 trang 83 sgk toan lop 9 tap 2 2 1516384044 c2phanchutrinh.edu.vn

Ta có : 

\(\widehat{A}\)+\(\widehat {BSM} = 2\widehat {CMN}\)

\(\widehat A\)=\(\frac{sđ\overparen{CN}-sđ\overparen{BM}}{2}\) (góc \(A\) là góc ngoài \((0)\))  (1)

\(\widehat {BSM}\)=\(\frac{sđ\overparen{CN}+sđ\overparen{BM}}{2}\) (góc \(S\) là góc trong \((0)\))  (2)

\(\widehat {CMN}\)=\(\frac{sđ\overparen{CN}}{2}\)

\(\Leftrightarrow\) \(2\widehat {CMN}\)=\(sđ\overparen{CN}\).  (3)

Cộng (1) và(2) theo vế với vế:

\(\widehat{A}\)+\(\widehat {BSM}\) =\(\frac{2sđ\overparen{CN}+(sđ\overparen{BM}-sđ\overparen{BM)}}{2}\)=\(\overparen{CN}\)

Từ (3) và (4) ta được:  \(\widehat A + \widehat {B{\rm{S}}M} = 2\widehat {CMN}\)

 


Bài 42 trang 83 sgk Toán lớp 9 tập 2

Bài 42. Cho tam giác \(ABC\) nội tiếp đường tròn. \(P, Q, R\) theo thứ tự là các điểm chính giữa các cung bị chắn \(BC, CA, AB\) bởi các góc \(A, B, C\).

a) Chứng minh \(AP \bot QR\)

b) \(AP\) cắt \(CR\) tại \(I\). Chứng minh tam giác \(CPI\) là tam giác cân

Hướng dẫn giải:

a) Gọi giao điểm của \(AP\) và \(QR\) là \(K\). 

 \(\widehat{AKR}\) là góc có đỉnh ở bên trong đường tròn nên 

\(\widehat{AKR}\) = \(\frac{sđ\overparen{AR}+sđ\overparen{QC}+sđ\overparen{CP}}{2}\)=\(\frac{sđ\overparen{AB}+sđ\overparen{AC}+sđ\overparen{BC}}{4}=90^0\)

Vậy \(\widehat{AKR} = 90^0\) hay \(AP \bot QR\)

b) \(\widehat{CIP}\)  là góc có đỉnh ở bên trong đường tròn nên:

\(\widehat{CIP}\) = \(\frac{sđ\overparen{AR}+sđ\overparen{CP}}{2}\)    (1)

\(\widehat {PCI}\) góc nội tiếp, nên \(\widehat {PCI}\)= \(\frac{sđ\overparen{RB}+sđ\overparen{BP}}{2}\)    (2)

Theo giả thiết thì cung \(\overparen{AR} = \overparen{RB}\)  (3)

Cung \(\overparen{CP} = \overparen{BP}\)        (4)

Từ (1), (2), (3), (4) suy ra: \(\widehat {CIP}=\widehat {PCI}\). Do đó \(∆CPI\) cân.
giai bai 40 41 42 43 trang 83 sgk toan lop 9 tap 2 3 1516384044 c2phanchutrinh.edu.vn

 


Bài 43 trang 83 sgk Toán lớp 9 tập 2

Bài 43. Cho đường tròn \((O)\) và hai dây cung song song \(AB, CD\) (\(A\) và \(C\) nằm trong cùng một nửa mặt phẳng bờ \(BD\)); \(AD\) cắt \(BC\) tại \(I\) 

Chứng minh \(\widehat{AOC }\) = \(\widehat{AIC }\).

Hướng dẫn giải:

giai bai 40 41 42 43 trang 83 sgk toan lop 9 tap 2 4 1516384044 c2phanchutrinh.edu.vn

Theo giả thiết: \(\overparen{AC}\)=\(\overparen{BD}\)  (vì \(AB // CD\))    (1)

\(\widehat{AIC }\) = \(\frac{sđ\overparen{AC}+sđ\overparen{BD}}{2}\)                      (2)

Theo (1) suy ra \(\widehat{AIC }\) = \(sđ\overparen{AC}\)  (3)

\(\widehat{AOC }\) = \(sđ\overparen{AC}\) (góc ở tâm chắn cung \(\overparen{AC}\))  (4)

So sánh (3), (4), ta có \(\widehat{AOC }\) = \(\widehat{AIC }\).

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.