Giải bài 43, 44, 45 trang 80 SGK toán 8 tập 2

Giải bài tập trang 80 bài 7 Trường hợp đồng dạng thứ ba Sách giáo khoa toán 8 tập 2. Câu 43:

Bài 43 trang 80 – Sách giáo khoa toán 8 tập 2

 Cho hình bình hành ABCD(h46) có độ dài các cạnh AB = 12cm, BC = 7cm. Trên cạnh AB lấy một điểm E sao cho AE = 8cm. Đường thẳng DE cắt CB kéo dài tại F,

Bạn đang xem bài: Giải bài 43, 44, 45 trang 80 SGK toán 8 tập 2

a) Trong hình vẽ đã cho có bao nhiêu cặp tam giác đồng dạng? hãy viết các cặp tam giác đồng dạng với nhau theo các đỉnh tương ứng.

b) Tính độ dài đoạn EF và BF, biết rằng DE = 10cm.

giai bai 43 44 45 trang 80 sach giao khoa toan 8 tap 2 1 1517415019 c2phanchutrinh.edu.vn

Giải:

a) BE // DC →  ∆BEF ∽ ∆CDF

AD // BF →  ∆ADE ∽ ∆BFE.

Do đó: ∆ADE ∽ ∆CFD

b) BE = AB – AE = 12 – 8 = 4cm

∆ADE ∽ ∆BFE →  \(\frac{AE}{BE}\) = \(\frac{AD}{BF}\) = \(\frac{DE}{EF}\)

→  \(\frac{8}{4}\) = \(\frac{7}{BF}\) = \(\frac{10}{EF}\)

→ BF = 3,5 cm.

EF = 5 cm.


Bài 44 trang 80 – Sách giáo khoa toán 8 tập 2

Cho tam giác ABC có các cạnh AB= 24cm, AC = 28cm. Tia phân giác của góc A cắt cạnh BC tại D. Gọi M,N theo thứ tự là hình chiếu của B và C trên AD.

a) Tính tỉ số \(\frac{BM}{CN}\)

b) Chứng minh rằng \(\frac{AM}{AN}\) = \(\frac{DM}{DN}\)

Giải:

giai bai 43 44 45 trang 80 sach giao khoa toan 8 tap 2 2 1517415019 c2phanchutrinh.edu.vn

a) AD là đường phân giác của ∆ABC

→  \(\frac{DB}{DC}\) = \(\frac{AB}{AC}\) = \(\frac{DB}{DC}\) = \(\frac{24}{28}\) = \(\frac{6}{7}\)

Mà BM // CN (cùng vuông góc với AD).

→  ∆BMD ∽ ∆CND →  \(\frac{BM}{CN}\) = \(\frac{BD}{CD}\) 

Vậy \(\frac{BM}{CN}\) = \(\frac{6}{7}\)

b) ∆ABM và ∆ACN có: \(\widehat{ABM}\) = \(\widehat{CAN}\)

\(\widehat{BMA}\) = \(\widehat{CNA}\) = 900

→  ∆ABM ∽ ∆ACN →  \(\frac{AM}{AN}\) = \(\frac{AB}{AC}\).

mà  \(\frac{AB}{AC}\) = \(\frac{DB}{DC}\) (cmt)

và \(\frac{BD}{CD}\) = \(\frac{DM}{DN}\)

→  \(\frac{AM}{AN}\) = \(\frac{DM}{DN}\)


Bài 44 trang 80 sgk toán 8 tập 2

Cho tam giác ABC có các cạnh AB = 24 cm, AC = 28 cm. Tia phân giác của góc A cắt cạnh BC tại D. Gọi M, N theo thứ tự là hình chiếu của B và C trên đường thẳng AD.

a)Tính tỉ số \({{BM} \over {CN}}\).

b)Chứng minh rằng \({{AM} \over {AN}} = {{DM} \over {DN}}\) .

Hướng dẫn làm bài:

 giai bai 43 44 45 trang 80 sach giao khoa toan 8 tap 2 3 1517415019 c2phanchutrinh.edu.vn

a) AD là đường phân giác trong ∆ABC

→ \({{DB} \over {DC}} = {{AB} \over {AC}} =  > {{DB} \over {DC}} = {{24} \over {28}} = {6 \over 7}\)

Mà BM // CN  (cùng vuông góc với AD).

→ ∆BMD ∽ ∆CND → \({{BM} \over {CN}} = {{BD} \over {CD}}\)

Vậy:\({{BM} \over {CN}} = {6 \over 7}\)

b) ∆ABM và ∆CAN có: \(\widehat {BAM} = \widehat {CAN}\) (AD là phân giác \(\widehat {BAC}\) )

 \(\widehat {BMA} = \widehat {CNA} = {90^0}\)

→ ∆ABM ∽∆ACN → \({{AM} \over {AN}} = {{AB} \over {AC}}\)

Mà \({{AB} \over {AC}} = {{DB} \over {DC}}\) (chứng minh trên)

Và \({{DB} \over {DC}} = {{DM} \over {DN}}\) (∆BMD ∽∆CND)

→ \({{AM} \over {AN}} = {{DM} \over {DN}}\)


Bài 45 trang 80 – Sách giáo khoa toán 8 tập 2

Hai tam giác ABC và DEF có \(\widehat{A}\) = \(\widehat{D}\), \(\widehat{B}\) = \(\widehat{E}\), AB = 8cm, BC = 10cm, DE= 8cm. Tính độ dài các cạnh AC, DF và EF, biết rằng cạnh AC dài hơn cạnh DF là 3cm.

Giải:

∆ABC ∽ ∆DEF vì có \(\widehat{A}\) = \(\widehat{D}\), \(\widehat{B}\) = \(\widehat{E}\) nên đồng dạng.

Vì ∆ABC ∽ ∆DEF →  \(\frac{AB}{DE}\) = \(\frac{BC}{EF}\) = \(\frac{CA}{FD}\)

Hay \(\frac{8}{6}\) = \(\frac{10}{EF}\) = \(\frac{CA}{FD}\)

Suy ra: EF = 7,5 cm

Vì \(\frac{8}{6}\) = \(\frac{CA}{FD}\)  →  \(\frac{CA}{8}\) = \(\frac{FD}{6}\) = \(\frac{CA – FD}{8-6}\) = 3/2

→ CD = \(\frac{8.3}{2}\) = 12 cm

FD = 12 -3 = 9cm 

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.