Giải bài 44, 45, 46, 47 trang 36 SBT Toán 8 tập 1

Giải bài tập trang 36 bài 9 biến đổi các biểu thức hữu tỉ Giá trị của phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 44: Biến đổi các biểu thức sau thành phân thức…

Câu 44 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Biến đổi các biểu thức sau thành phân thức

Bạn đang xem bài: Giải bài 44, 45, 46, 47 trang 36 SBT Toán 8 tập 1

a. \({1 \over 2} + {x \over {1 – {x \over {x + 2}}}}\)

b. \({{x – {1 \over {{x^2}}}} \over {x + {1 \over x} + {1 \over {{x^2}}}}}\)

c. \({{1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \over {{1 \over x} – {1 \over y}}}\)

d. \({{{x \over 4} – 1 + {3 \over {4x}}} \over {{x \over 2} – {6 \over x} + {1 \over 2}}}\)

Giải:

a. \({1 \over 2} + {x \over {1 – {x \over {x + 2}}}}\)\( = {1 \over 2} + {x \over {{{x + 2 – x} \over {x + 2}}}} = {1 \over 2} + {x \over {{2 \over {x + 2}}}}\)

 

b. \({{x – {1 \over {{x^2}}}} \over {x + {1 \over x} + {1 \over {{x^2}}}}}\) \( = \left( {x – {1 \over {{x^2}}}} \right):\left( {1 + {1 \over x} + {1 \over {{x^2}}}} \right) = {{{x^3} – 1} \over {{x^2}}}:{{{x^2} + x + 1} \over {{x^2}}}\)

\( = {{{x^3} – 1} \over {{x^2}}}.{{{x^2}} \over {{x^2} + x + 1}} = {{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right){x^2}} \over {{x^2}\left( {{x^2} + x + 1} \right)}} = x – 1\)

c. \({{1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \over {{1 \over x} – {1 \over y}}}\)\( = \left( {1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \right):\left( {{1 \over x} – {1 \over y}} \right) = {{{x^2} – 2xy + {y^2}} \over {{x^2}}}:{{y – x} \over {xy}}\)

\( = {{{x^2} – 2xy + {y^2}} \over {{x^2}}}.{{xy} \over {y – x}} = {{{{\left( {y – x} \right)}^2}.xy} \over {{x^2}\left( {y – x} \right)}} = {{y\left( {y – x} \right)} \over x}\)

d. \({{{x \over 4} – 1 + {3 \over {4x}}} \over {{x \over 2} – {6 \over x} + {1 \over 2}}}\)\( = \left( {{x \over 4} – 1 + {3 \over {4x}}} \right):\left( {{x \over 2} – {6 \over x} + {1 \over 2}} \right) = {{{x^2} – 4x + 3} \over {4x}}:{{{x^2} – 12x + x} \over {2x}}\)

\(\eqalign{  &  = {{{x^2} – 4x + 3} \over {4x}}.{{2x} \over {{x^2} – 12 + x}} = {{{x^2} – x – 3x + 3} \over {4x}}.{{2x} \over {{x^2} – 3x + 4x – 12}}  \cr  &  = {{\left( {x – 1} \right)\left( {x – 3} \right)} \over {4x}}.{{2x} \over {\left( {x – 3} \right)\left( {x + 4} \right)}} = {{\left( {x – 1} \right)\left( {x – 3} \right).2x} \over {4x\left( {x – 3} \right)\left( {x + 4} \right)}} = {{x – 1} \over {2\left( {x + 4} \right)}} \cr} \)


Câu 45 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Thực hiện các phép tính sau :

a. \(\left( {{{5x + y} \over {{x^2} – 5xy}} + {{5x – y} \over {{x^2} + 5xy}}} \right).{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}\)

b. \({{4xy} \over {{y^2} – {x^2}}}:\left( {{1 \over {{x^2} + 2xy + {y^2}}} – {1 \over {{x^2} – {y^2}}}} \right)\)

c. \(\left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {4{x^2} – {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{4{x^2} + 4xy + {y^2}} \over {16x}}\)

d. \(\left( {{2 \over {x + 2}} – {4 \over {{x^2} + 4x + 4}}} \right):\left( {{2 \over {{x^2} – 4}} + {1 \over {2 – x}}} \right)\)

Giải:

a. \(\left( {{{5x + y} \over {{x^2} – 5xy}} + {{5x – y} \over {{x^2} + 5xy}}} \right).{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}\)

\(\eqalign{  &  = \left[ {{{5x + y} \over {x\left( {x – 5y} \right)}} + {{5x – y} \over {x\left( {x + 5y} \right)}}} \right].{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}  \cr  &  = {{\left( {5x + y} \right)\left( {x + 5y} \right) + \left( {5x – y} \right)\left( {x – 5y} \right)} \over {x\left( {x – 5y} \right)\left( {x + 5y} \right)}}.{{\left( {x – 5y} \right)\left( {x + 5y} \right)} \over {{x^2} + {y^2}}}  \cr  &  = {{5{x^2} + 25xy + xy + 5{y^2} + 5{x^2} – 25xy – xy + 5{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}}  \cr  &  = {{10{x^2} + 10{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}} = {{10\left( {{x^2} + {y^2}} \right)} \over {x\left( {{x^2} + {y^2}} \right)}} = {{10} \over x} \cr} \)

b. \({{4xy} \over {{y^2} – {x^2}}}:\left( {{1 \over {{x^2} + 2xy + {y^2}}} – {1 \over {{x^2} – {y^2}}}} \right)\)

\(\eqalign{  &  = {{4xy} \over {{y^2} – {x^2}}}:\left[ {{1 \over {{{\left( {x + y} \right)}^2}}} – {1 \over {\left( {x + y} \right)\left( {x – y} \right)}}} \right]  \cr  &  = {{4xy} \over {{y^2} – {x^2}}}:{{x – y – \left( {x + y} \right)} \over {{{\left( {x + y} \right)}^2}\left( {x – y} \right)}} = {{4xy} \over {{y^2} – {x^2}}}:{{ – 2y} \over {{{\left( {x + y} \right)}^2}\left( {x – y} \right)}} = {{4xy} \over {{y^2} – {x^2}}}.{{{{\left( {x + y} \right)}^2}\left( {y – x} \right)} \over {2y}}  \cr  &  = {{4xy{{\left( {x + y} \right)}^2}\left( {y – x} \right)} \over {\left( {y + x} \right)\left( {y – x} \right).2y}} = 2x\left( {x + y} \right) \cr} \)

c. \(\left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {4{x^2} – {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{4{x^2} + 4xy + {y^2}} \over {16x}}\)

\(\eqalign{  &  = \left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {\left( {2x + y} \right)\left( {2x – y} \right)}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{{{\left( {2x + y} \right)}^2}} \over {16x}}  \cr  &  = {{{{\left( {2x + y} \right)}^2} + 2\left( {2x + y} \right)\left( {2x – y} \right) + {{\left( {2x – y} \right)}^2}} \over {{{\left( {2x + y} \right)}^2}.{{\left( {2x – y} \right)}^2}}}.{{{{\left( {2x + y} \right)}^2}} \over {16x}}  \cr  &  = {{{{\left[ {\left( {2x + y} \right) + \left( {2x – y} \right)} \right]}^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {{{{\left( {4x} \right)}^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {{16{x^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {x \over {{{\left( {2x – y} \right)}^2}}} \cr} \)

d. \(\left( {{2 \over {x + 2}} – {4 \over {{x^2} + 4x + 4}}} \right):\left( {{2 \over {{x^2} – 4}} + {1 \over {2 – x}}} \right)\)

\(\eqalign{  &  = \left[ {{2 \over {x + 2}} – {4 \over {{{\left( {x + 2} \right)}^2}}}} \right]:\left[ {{2 \over {\left( {x + 2} \right)\left( {x – 2} \right)}} – {1 \over {x – 2}}} \right]  \cr  &  = {{2\left( {x + 2} \right) – 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 – \left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x – 2} \right)}} = {{2x + 4 – 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 – x – 2} \over {\left( {x + 2} \right)\left( {x – 2} \right)}}  \cr  &  = {{2x} \over {{{\left( {x + 2} \right)}^2}}}.{{\left( {x + 2} \right)\left( {x – 2} \right)} \over { – x}} = {{2\left( {x – 2} \right)} \over { – \left( {x + 2} \right)}} = {{2\left( {2 – x} \right)} \over {x + 2}} \cr} \)


Câu 46 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Tìm điều kiện của biến để giá trị của phân thức xác định :

a. \({{5{x^2} – 4x + 2} \over {20}}\)

b. \({8 \over {x + 2004}}\)

c. \({{4x} \over {3x – 7}}\)

d. \({{{x^2}} \over {x + z}}\)

Giải:

a. Phân thức : \({{5{x^2} – 4x + 2} \over {20}}\)xác định với mọi \(x \in R\)

b. Phân thức : \({8 \over {x + 2004}}\)xác định khi \(x + 2004 \ne 0 \Rightarrow x \ne  – 2004\)

c. Phân thức : \({{4x} \over {3x – 7}}\)xác định khi \(3x – 7 \ne 0 \Rightarrow x \ne {7 \over 3}\)

d. Phân thức : \({{{x^2}} \over {x + z}}\)xác định khi \(x + z \ne 0 \Rightarrow x \ne  – z\)


Câu 47 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Phân tích mẫu thức của các phân thức sau thành nhân tử rồi tìm điều kiện của x để giá trị của phân thức xác định :

a. \({5 \over {2x – 3{x^2}}}\)

b. \({{2x} \over {8{x^3} + 12{x^2} + 6x + 1}}\)

c. \({{ – 5{x^2}} \over {16 – 24x + 9{x^2}}}\)

d. \({3 \over {{x^2} – 4{y^2}}}\)

Giải:

a.  \({5 \over {2x – 3{x^2}}}\)\( = {5 \over {x\left( {2 – 3x} \right)}}\) xác định khi \(x\left( {2 – 3x} \right) \ne 0\)

\(\left\{ {\matrix{{x \ne 0}  \cr{2 – 3x \ne 0}  \cr}  \Rightarrow \left\{ {\matrix{ {x \ne 0}  \cr {x \ne {2 \over 3}}  \cr} } \right.} \right.\)

Vậy phân thức \({5 \over {2x – 3{x^2}}}\) xác định với \(x \ne 0\)  và \(x \ne {2 \over 3}\)

b. \({{2x} \over {8{x^3} + 12{x^2} + 6x + 1}}\) \( = {{2x} \over {{{\left( {2x + 1} \right)}^3}}}\) xác định khi \({\left( {2x + 1} \right)^3} \ne 0 \Rightarrow 2x + 1 \ne 0 \Rightarrow x \ne  – {1 \over 2}\)

c.  \({{ – 5{x^2}} \over {16 – 24x + 9{x^2}}}\)\( = {{ – 5{x^2}} \over {{4^2} – 2.4.3x + {{\left( {3x} \right)}^2}}} = {{ – 5{x^2}} \over {{{\left( {4 – 3x} \right)}^2}}}\)

xác định khi \({\left( {4 – 3x} \right)^2} \ne 0 \Rightarrow 4 – 3x \ne 0 \Rightarrow x \ne {4 \over 3}\)

d. \({3 \over {{x^2} – 4{y^2}}}\)\( = {3 \over {\left( {x – 2y} \right)\left( {x + 2y} \right)}}\)  xác định khi \(\left( {x – 2y} \right)\left( {x + 2y} \right) \ne 0\)

\( \Rightarrow \left\{ {\matrix{{x – 2y \ne 0}  \cr{x + 2y \ne 0}  \cr}  \Rightarrow x \ne  \pm 2y} \right.\)

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…