Giải bài 57, 58, 59, I.1 trang 14 SBT Toán 8 tập 1

Giải bài tập trang 14 bài ôn tập chương I – Phép nhân và phép chia các đa thức Sách bài tập (SBT) Toán 8 tập 1. Câu 57: Phân tích các đa thức sau thành nhân tử…

Câu 57 trang 14 Sách bài tập (SBT) Toán 8 tập 1

Phân tích các đa thức sau thành nhân tử:

Bạn đang xem bài: Giải bài 57, 58, 59, I.1 trang 14 SBT Toán 8 tập 1

a. \({x^3} – 3{x^2} – 4x + 12\)

b. \({x^4} – 5{x^2} + 4\)

c. \({\left( {x + y + z} \right)^3} – {x^3} – {y^3} – {z^3}\)

Giải:

a. \({x^3} – 3{x^2} – 4x + 12\) \( = \left( {{x^3} – 3{x^2}} \right) – \left( {4x – 12} \right) = {x^2}\left( {x – 3} \right) – 4\left( {x – 3} \right)\)

\( = \left( {x – 3} \right)\left( {{x^2} – 4} \right) = \left( {x – 3} \right)\left( {x + 2} \right)\left( {x – 2} \right)\)

b. \({x^4} – 5{x^2} + 4\) \( = {x^4} – 4{x^2} – {x^2} + 4 = \left( {{x^4} – 4{x^2}} \right) – \left( {{x^2} – 4} \right)\)

\( = {x^2}\left( {{x^2} – 4} \right) – \left( {{x^2} – 4} \right) = \left( {{x^2} – 4} \right)\left( {{x^2} – 1} \right) = \left( {x + 2} \right)\left( {x – 2} \right)\left( {x + 1} \right)\left( {x – 1} \right)\)

c. \({\left( {x + y + z} \right)^3} – {x^3} – {y^3} – {z^3}\) \( = {\left[ {\left( {x + y} \right) + z} \right]^3} – {x^3} – {y^3} – {z^3}\)

\(\eqalign{  &  = {\left( {x + y} \right)^3} + 3{\left( {x + y} \right)^2}z + 3\left( {x + y} \right){z^2} + {z^3} – {x^3} – {y^3} – {z^3}  \cr  &  = {x^3} + {y^3} + 3xy\left( {x + y} \right) + 3{\left( {x + y} \right)^2}z + 3\left( {x + y} \right){z^2} – {x^3} – {y^3}  \cr  &  = 3\left( {x + y} \right)\left[ {xy + \left( {x + y} \right)z + {z^2}} \right] = 3\left( {x + y} \right)\left[ {xy + xz + yz + {z^2}} \right]  \cr  &  = 3\left( {x + y} \right)\left[ {x\left( {y + z} \right) + z\left( {y + z} \right)} \right] = 3\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) \cr} \)


Câu 58 trang 14 Sách bài tập (SBT) Toán 8 tập 1

Làm phép chia

a. \(\left( {2{x^3} + 5{x^2} – 2x + 3} \right):\left( {2{x^2} – x + 1} \right)\)

b. \(\left( {2{x^3} – 5{x^2} + 6x – 15} \right):\left( {2x – 5} \right)\)

c. \(\left( {{x^4} – x – 14} \right):\left( {x – 2} \right)\)

Giải:

giai bai i1 i2 i3 i4 i5 53 54 55 56 57 58 59 trang 13 14 15 sach bai tap sbt toan 8 tap 1 1 1515323413 c2phanchutrinh.edu.vn


Câu 59 trang 14 Sách bài tập (SBT) Toán 8 tập 1

Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau:

a. A\( = {x^2} – 6x + 11\)

b. B\( = 2{x^2} + 10x – 1\)

c. C\( = 5x – {x^2}\)

Giải:

a. A\( = {x^2} – 6x + 11\) \( = {x^2} – 2.3x + 9 + 2 = {\left( {x – 3} \right)^2} + 2\)

Ta có: \({\left( {x – 3} \right)^2} \ge 0 \Rightarrow {\left( {x – 3} \right)^2} + 2 \ge 2\)

\( \Rightarrow A \ge 2\). Vậy A = 2 là giá trị bé nhất của biểu thức tại \(x = 3\)

b. B\( = 2{x^2} + 10x – 1\)= \(2\left( {{x^2} + 5x – {1 \over 2}} \right)\)

\(\eqalign{  &  = 2\left[ {x + 2.{5 \over 2}x + {{\left( {{5 \over 2}} \right)}^2} – {{\left( {{5 \over 2}} \right)}^2} – {1 \over 2}} \right]  \cr  &  = 2\left[ {{{\left( {x + {5 \over 2}} \right)}^2} – {{25} \over 4} – {2 \over 4}} \right] = 2\left[ {{{\left( {x + {5 \over 2}} \right)}^2} – {{27} \over 4}} \right] = 2{\left( {x + {5 \over 2}} \right)^2} – {{27} \over 2} \cr} \)

Vì \({\left( {x + {5 \over 2}} \right)^2} \ge 0 \Rightarrow 2{\left( {x + {5 \over 2}} \right)^2} \ge 0 \Rightarrow 2{\left( {x + {5 \over 2}} \right)^2} – {{27} \over 2} \ge  – {{27} \over 2}\)

\( \Rightarrow B \ge {{27} \over 2}\). Vậy B\( =  – {{27} \over 2}\) là giá trị nhỏ nhất tại \(x =  – {5 \over 2}\)

c. \( C= 5x – {x^2}\) \( =  – ({x^2} – 5x) =  – \left[ {{x^2} – 2.{5 \over 2}x + {{\left( {{5 \over 2}} \right)}^2} – {{\left( {{5 \over 2}} \right)}^2}} \right]\)

\( =  – \left[ {{{\left( {x – {5 \over 2}} \right)}^2} – {{25} \over 4}} \right] =  – {\left( {x – {5 \over 2}} \right)^2} + {{25} \over 4}\)

Vì \({\left( {x – {5 \over 2}} \right)^2} \ge 0 \Rightarrow  – {\left( {x – {5 \over 2}} \right)^2} \le 0 \Rightarrow  – {\left( {x – {5 \over 2}} \right)^2} + {{25} \over 4} \le {{25} \over 4}\)

\( \Rightarrow C \le {{25} \over 4}\). Vậy C\( = {{25} \over 4}\) là giá trị nhỏ nhất tại \(x = {5 \over 2}\)

 


Câu I.1 trang 14 Sách bài tập(SBT) Toán 8 tập 1

Kết quả của phép tính \(\left( {x + 2} \right)\left( {x – 1} \right)\) là:

A. \({x^2} – 2\)

B. \({x^2} + 2x – 2\)

C. \({x^2} + x – 2\)

D. \({x^2} + 2x\)

Hãy chọn kết quả đúng.

Giải: 

Chọn C. \({x^2} + x – 2\)

c2phanchutrinh.edu.vn

Trích nguồn: c2phanchutrinh.edu.vn
Danh mục: Giải bài tập

Related Posts

Trung Anh

Tôi là một giáo viên ngoại ngữ dạy tiếng Anh và tiếng Trung trong trường học. Tôi có nhiều năm kinh nghiệm và tận hưởng việc truyền đạt kiến thức và tình yêu cho ngôn ngữ cho học sinh. Tôi tạo ra một môi trường học tập tích cực, khuyến khích sự tham gia và trau dồi kỹ năng ngôn ngữ. Tôi tin rằng việc học ngôn ngữ không chỉ là việc học từ vựng và ngữ pháp, mà còn là khám phá văn hóa và giao tiếp hiệu quả. Tôi luôn cố gắng truyền cảm hứng cho học sinh, giúp họ vượt qua rào cản ngôn ngữ và đạt được mục tiêu học tập của mình. Tôi mong muốn chia sẻ yêu thương và kiến thức với học sinh và giúp họ trở thành người tự tin và thành công trong việc sử dụng tiếng Anh và tiếng Trung.