Giải bài 64, 65, 66 trang 33, 34 SGK Toán 9 tập 1

Giải bài tập trang 33, 34 bài 8 rút gọn biểu thức chứa căn bậc hai SGK Toán 9 tập 1. Câu 64: Chứng minh các đẳng thức sau…

Bài 64 trang 33 sgk Toán 9 – tập 1

Chứng minh các đẳng thức sau:

Bạn đang xem bài: Giải bài 64, 65, 66 trang 33, 34 SGK Toán 9 tập 1

a) \(\left( {{{1 – a\sqrt a } \over {1 – \sqrt a }} + \sqrt a } \right){\left( {{{1 – \sqrt a } \over {1 – a}}} \right)^2} = 1\) với a ≥ 0 và a ≠ 1

b) \( {{a + b} \over {{b^2}}}\sqrt {{{{a^2}{b^4}} \over {{a^2} + 2{\rm{a}}b + {b^2}}}}  = \left| a \right|\) với a + b > 0 và b ≠ 0

Hướng dẫn giải:

a) Biến đổi vế trái để được vế phải.

Ta có:

\(VT=\left ( \frac{1-a\sqrt{a}}{1-\sqrt{a}} +\sqrt{a}\right )\left ( \frac{1-\sqrt{a}}{1-a} \right )^{2}\)

\(= \frac{(1-a\sqrt{a}+\sqrt{a}-a)(1-\sqrt{a})}{(1-a)^{2}}\)

\(=\frac{\left [ (1-a) +(\sqrt{a}-a\sqrt{a})\right ](1-\sqrt{a})}{(1-a)^{2}}\)

\(= \frac{(1-a)(1-a)}{(1-a)^{2}}=1=VP\)

b) Ta có:

\(VT=\frac{a+b}{b^{2}}\sqrt{\frac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}}\)

\(=\frac{a+b}{b^{2}}.\frac{|a|b^2}{|a+b|}\)

Mà \(a+b>0\Rightarrow |a+b|=a+b\) nên:

\(\frac{a+b}{b^{2}}.\frac{|a|b^2}{|a+b|}=\frac{a+b}{b^{2}}.\frac{|a|b^2}{a+b}=|a|=VP\)

 


Bài 65 trang 34 sgk Toán 9 – tập 1

Bài 65. Rút gọn rồi so sánh giá trị của M với 1, biết:

\(M = \left( {{1 \over {a – \sqrt a }} + {1 \over {\sqrt a  – 1}}} \right):{{\sqrt a  + 1} \over {a – 2\sqrt a  + 1}}\) với a > 0 và a ≠ 1

Hướng dẫn giải:

\(\eqalign{
& M = \left( {{1 \over {a – \sqrt a }} + {1 \over {\sqrt a – 1}}} \right):{{\sqrt a + 1} \over {a – 2\sqrt a + 1}} \cr
& = {{1 + \sqrt a } \over {\sqrt a \left( {\sqrt a – 1} \right)}}.{{{{\left( {\sqrt a – 1} \right)}^2}} \over {\sqrt a + 1}} \cr
& = {{\sqrt a – 1} \over {\sqrt a }} = 1 – {1 \over {\sqrt a }}

 


Bài 66 trang 34 sgk Toán 9 – tập 1

Bài 66. Giá trị của biểu thức \(\frac{1}{2+\sqrt{3}}+\frac{1}{2-\sqrt{3}}\) bằng:

(A) \(\frac{1}{2}\);

(B) 1;

(C) -4;

(D) 4.

Hãy chọn câu trả lời đúng.

Hướng dẫn giải:

Ta có:

\(\frac{1}{2+\sqrt{3}}+\frac{1}{2-\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})}+\frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})}\)

\(=\frac{2+2+\sqrt{3}-\sqrt{3}}{4-3}=4\)

Chọn đáp án (D). 4

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…