Giải bài 81, 82, 83, 84 trang 90 SBT Toán 8 tập 1

Giải bài tập trang 90 bài 7 hình bình hành Sách bài tập (SBT) Toán 8 tập 1. Câu 81: Chu vi hình bình hành ABCD bằng 10cm, chu vi tam giác ABD bằng 9cm. Tính độ dài BD…

Câu 81 trang 90 Sách bài tập (SBT) Toán 8 tập 1

Chu vi hình bình hành ABCD bằng 10cm, chu vi tam giác ABD bằng 9cm. Tính độ dài BD.

Bạn đang xem bài: Giải bài 81, 82, 83, 84 trang 90 SBT Toán 8 tập 1

Giải:                                                               

giai bai 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 71 trang 89 90 91 sach bai tap toan 8 tap 1 10 1515343063 Trường THCS Phan Chu Trinh

Chu vi hình bình hành ABCD bằng 10cm

nên (AB + AD).2 = 10 (cm)

\(⇒ AB + AD = {{10} \over 2} =5\) (cm)

Chu vi của ∆ ABD bằng :

AB + AD +BD = 9 (cm)

⇒ BD = 9 – ( AB + AD) = 9 – 5 = 4 (cm)

 


Câu 82 trang 90 Sách bài tập (SBT) Toán 8 tập 1

Trên hình 10, cho ABCD là hình bình hành. Chứng minh rằng AE // CF.

giai bai 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 71 trang 89 90 91 sach bai tap toan 8 tap 1 11 1515343063 Trường THCS Phan Chu Trinh

 Giải:                                                                 

giai bai 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 71 trang 89 90 91 sach bai tap toan 8 tap 1 12 1515343063 Trường THCS Phan Chu Trinh

 Gọi O là giao điểm của AC và BD, ta có:

 (tính chất hình bình hành)

Xét ∆ AEB và ∆ CFD :

AB = CD (tính chất hình bình hành)

\(\widehat {ABE} = \widehat {CDF}\) (so le trong)

BE = DF (gt)                               

Do đó: ∆ AEB = ∆ CFD (c.g.c)

⇒ BE = DF

Ta có: OB = OE + BE

           OD = OF + DF

Suy ra: OE = OF

Suy ra: Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường) // CF

 


Câu 83 trang 90 Sách bài tập (SBT) Toán 8 tập 1

Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng :

a. EMFN là hình bình hành.

b. Các đường thẳng AC, EF, MN đồng quy.

Giải:                                                                    

giai bai 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 71 trang 89 90 91 sach bai tap toan 8 tap 1 13 1515343063 Trường THCS Phan Chu Trinh

Xét tứ giác AECF, ta có:

AB // CD (gt)

hay AE // CF

AE \( = {1 \over 2}\)AB (gt)

CF \(= {1 \over 2}\)CD (gt)

AB = CD (tính chất hình bình hành)

Suy ra: AE = CF

Tứ giác AECF là hình bình hành ( vì có một cặp cạnh đối diện song song và bằng nhau) ⇒ AF // CE hay EN // FM (1)

Xét tứ giác BFDE ta có:

AB // CD (gt) hay BE // DF

BE \( = {1 \over 2}\)AB (gt)

DF \( = {1 \over 2}\)CD (gt)

AB = CD ( tính chất hình bình hành)

Suy ra: BE = DF

Tứ giác BFDE là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)

⇒ BF // DE hay EM // FN (2)

Từ (1) và (2) suy ra tứ giác EMFN là hình bình hành (theo định nghĩa)

b. Gọi O là giao điểm của AC và EF

Tứ giác AECF là hình bình hành ⇒ OE = OF

Tứ giác EMFN là hình bình hành nên hai đường chéo cắt nhau tại trung điểm mỗi đường.

Suy ra: MN đi qua trung điểm O của EF

Vậy AC, EF, MN đồng quy tại O.

 


Câu 84 trang 90 Sách bài tập (SBT) Toán 8 tập 1

              giai bai 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 71 trang 89 90 91 sach bai tap toan 8 tap 1 14 1515343063 Trường THCS Phan Chu Trinh

                                                         

Trên hình 11, cho ABCD là hình bình hành. Chứng minh rằng:

a. EGFH là hình bình hành

b. Các đường thẳng AC, BD, EF, GH đồng quy.

Giải:                                                                      

giai bai 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 71 trang 89 90 91 sach bai tap toan 8 tap 1 15 1515343063 Trường THCS Phan Chu Trinh

a. Xét ∆ AEH và ∆ CFG:

AE = CF

\(\widehat A = \widehat C\) (tính chất hình bình hành)

AH = CG (vì AD = BC và DH = BG)

Do đó: ∆ AEH = ∆ CFG (c.g.c)

⇒ EH = FG

Xét ∆ BEG và ∆DFH:

DH = BG (gt)

\(\widehat B = \widehat D\) (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF)

Do đó: ∆ BEG = ∆DFH (c.g.c)

⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có cắc cặp cạnh đối bằng nhau)

b. Gọi O là giao điểm của AC và EF.

Xét tứ giác AECF:

AB // CD (gt) hay AE // CF

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)

⇒ O là trung điểm của AC và EF

Tứ giác ABCD là hình bình hành có O là trung điểm của AC nên O cũng là trung điểm của BD.

Tứ giác EGFH là hình bình hành có O là trung điểm của EF nên O cùng là trung điểm của GH.

Vậy AC, BD, GH đồng quy tại O.

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…