Giải bài 36, 37, 38 trang 161, 162 SBT Toán 8 tập 1

Giải bài tập trang 161, 162 bài diện tích hình thang Sách bài tập (SBT) Toán 8 tập 1. Câu 36: Tính diện tích hình thang, biết các đáy có độ dài là 7cm và 9cm, một trong các cạnh bên dài 8cm và tạo với đáy một góc có số đo bằng 30°…

Câu 36 trang 161 Sách bài tập (SBT) Toán 8 tập 1

Tính diện tích hình thang, biết các đáy có độ dài là 7cm và 9cm, một trong các cạnh bên dài 8cm và tạo với đáy một góc có số đo bằng 30°

Bạn đang xem bài: Giải bài 36, 37, 38 trang 161, 162 SBT Toán 8 tập 1

Giải:                                                         

giai bai 32 33 34 35 36 37 38 39 40 41 41 42 43 trang 161 162 sach bai tap sbt toan 8 tap 1 5 1515344690 Trường THCS Phan Chu Trinh

Xét hình thang ABCD có đáy AB = 7cm và CD = 9cm, cạnh bên BC = 8cm, \(\widehat C = 30^\circ \)

Kẻ BE ⊥ CD. Tam giác vuông CBE có \(\widehat E = 90^\circ \)

\(\widehat C = 30^\circ  \Rightarrow \widehat {CBE} = 60^\circ \)nên nó là một nửa tam giác đều có cạnh là CB.

\( \Rightarrow BE = {1 \over 2}CB = 4\) (cm)

\({S_{ABCD}} = {{AB + CD} \over 2}.BE = {{7 + 9} \over 2}.4 = 32(c{m^2})\)


Câu 37 trang 162 Sách bài tập (SBT) Toán 8 tập 1

Chứng minh rằng mọi đường thẳng đi qua trung điểm của đường trung bình của hình thang và cắt hai đáy hình thang sẽ chia hình thang đó thành hai hình thang có diện tích bằng nhau.

Giải:                                                                     

giai bai 32 33 34 35 36 37 38 39 40 41 41 42 43 trang 161 162 sach bai tap sbt toan 8 tap 1 6 1515344690 Trường THCS Phan Chu Trinh

Giả sử hình thang ABCD có AB // CD, đường trung bình là MN. Gọi I là trung điểm của MN, đường thẳng bất kỳ đi qua I cắt AB tại P và CD tại Q

Ta có hai hình thang APQD và BPQC có chung đường cao.

MI là đường trung bình của hình thang APQD

\( \Rightarrow MI = {1 \over 2}\left( {AP + QD} \right)$ $IN = {1 \over 2}\left( {BP + QC} \right)\)

IN là đường trung bình của hình thang BPQC :

\( \Rightarrow IN = {1 \over 2}\left( {BP + QC} \right)\)

\(\eqalign{  & {S_{APQD}} = {1 \over 2}\left( {AP + QD} \right).AH = MI.AH(1)  \cr  & {S_{BPQC}} = {1 \over 2}\left( {BP + QC} \right).AH = IN.AH(2) \cr} \)

IM = IN (gt)

Từ (1), (2) và (gt) suy ra : \({S_{APQD}} = {S_{BPQC}}\) không phụ thuộc vào P và Q 


Câu 38 trang 162 Sách bài tập (SBT) Toán 8 tập 1

Diện tích hình bình hành bằng 24\(c{m^2}\). Khoảng cách từ giao điểm hai đường chéo đến các cạnh hình bình hành bằng 2cm và 3cm. Tính chu vi của hình bình hành đó.

Giải:                                                              

giai bai 32 33 34 35 36 37 38 39 40 41 41 42 43 trang 161 162 sach bai tap sbt toan 8 tap 1 7 1515344690 Trường THCS Phan Chu Trinh

Gọi O là giao điểm hai đường chéo hình bình hành ABCD, khoảng cách từ O đến cạnh AB là OH = 2cm, đến cạnh BC là OK = 3cm.

Kéo dài OH cắt cạnh CD tại H’

OH ⊥ AB ⇒ OH’ ⊥ CD và OH’ = 2cm

nên HH’ bằng đường cao của hình bình hành

\(\eqalign{  & {S_{ABCD}} = HH’.AB  \cr  &  \Rightarrow AB = {{{S_{ABCD}}} \over {HH’}} = {{24} \over 4} = 6(cm) \cr} \)

Kéo dài OK cắt AD tại K’

OK ⊥ BC ⇒ OK’ ⊥ AD và OK’ = 3 (cm)

nên KK’ là đường cao của hình bình hành

\({S_{ABCD}} = KK’.BC \Rightarrow BC = {{{S_{ABCD}}} \over {KK’}} = {{24} \over 6} = 4\) (cm)

Chu vi hình bình hành ABCD là (6 + 4) . 2 = 20 (cm)


 

Trường THCS Phan Chu Trinh

Trích nguồn: Trường THCS Phan Chu Trinh
Danh mục: Giải bài tập

Related Posts

c2phanchutrinh

Trường Phan Chu Trinh được thành lập năm 1946 tại địa chỉ số 40-42 Phố Phan Chu Trinh (nay là phố Nguyễn Thái Học, Quận Ba Đình, TP Hà Nội). Khi thành lập Trường Phan Chu Trinh có bậc tiểu học và bậc trung học. Giám đốc (hiệu trưởng) là nhà Văn hóa Giáo dục nổi tiếng: Giáo sư Đặng Thai Mai. Tổng thư ký là ông Nguyễn Huân, các giáo viên chính của trường lúc đó: Bà Nguyễn Khoa Diệu Hồng, ông Lê Viết Khoa, Nhạc sĩ Lưu Hữu Phước, Họa sĩ Nguyễn Đỗ Cung, Phan Kế Anh, Nhà văn Nguyễn Đình Thi, Thi sĩ Nguyễn Xuân Sanh…